2019학년도 전공수학 중등교원임용시험 대비

सम्बा सम्भ

해석학 이론

정 현 민 편저

(구) 노량진행정고시학원 www.ngosi.co.kr 02) 816-2030

해석학 이론 목차

Chapter	2 실수계 5
Chapter	3 수열과 급수 16
Chapter	4 극한 40
Chapter	5 연속함수 52
Chapter	6 미분 72
Chapter	7 Riemann 적분 98
Chapter	8 함수열 128
Chapter	9 무한급수 142
Chapter	10 이중적분, 그린정리 165

제 2장 실수계

2.1 R의 대수적 성질과 순서성질

정리 2.1.1 a, b∈ ℝ 라 하자.

- (1) 모든 $\epsilon > 0$ 에 대하여 $0 \le a < \epsilon$ 이면 a = 0이다.
- (2) 모든 $\epsilon > 0$ 에 대하여 $a < b + \epsilon$ 이면 $a \le b$ 이다.
- (3) L>1인 임의의 $L\in\mathbb{R}$ 에 대하여 $a\leq bL$ 이면 $a\leq b$ 이다.

『증명』

2.2 부등식

정리 2.2.1 (삼각부등식) $a, b \in \mathbb{R}$ 이면 $|a+b| \le |a| + |b|$ 이다.

정리 2.2.2 $a, b \in \mathbb{R}$ 이면 다음이 성립한다.

(a)
$$||a| - |b|| \le |a - b|$$

(b)
$$|a-b| \le |a| + |b|$$

『증명』

정리 2.2.3 (Bernoulli 부등식)

x>-1이면 모든 $n\in\mathbb{N}$ 에 대하여 $(1+x)^n\geq 1+nx$ 이 성립한다.

2.3 ℝ의 완비성

 $race{eta^9}{89}$ $^{2.3.1}$ S를 \mathbb{R} 의 공집합이 아닌 부분집합이라 하자.

- (a) 모든 $s \in S$ 에 대하여 $s \le u$ 가 되는 수 $u \in \mathbb{R}$ 가 존재하면, 집합 S는 위로 유계이다 (bounded above)라고 한다. 각각의 그러한 수 u를 S의 **상계(upper bound)**라 한다.
- (b) 모든 s \in S 에 대하여 w \leq s 가 되는 수 w \in \mathbb{R} 가 존재하면, 집합 S 는 **아래로 유계** 이다(bounded below)라고 한다. 각각의 그러한 수 w를 S의 하계(lower bound)라 한다.
- (c) 한 집합이 위로 유계이고 동시에 아래로 유계일 때, 이 집합은 유계이다(bounded) 라고 한다. 집합이 유계가 아니면, 이는 **유계가 아니다(unbounded)**라고 한다.

 $race{eta^{99}}{}^{2.3.2}$ S를 $\mathbb R$ 의 공집합이 아닌 부분집합이라 하자.

- (a) S가 위로 유계일 때, 다음 조건을 만족하는 수 u를 S의 **상한(supremum)** 또는 최소상계(least upper bound)라 하고 SupS라 표기한다.
 - (1) u는 S의 상계이다.
 - (2) v가 S의 임의의 상계이면 $u \leq v$ 이다.
- (b) S가 아래로 유계일 때, 다음 조건을 만족하는 수 w를 S의 **하한(infimum)** 또는 최대 하계(greatest lower bound)라 하고 infS라 표기한다.
 - (1) $w \vdash S$ 의 하계이다.
 - (2) t가 S의 임의의 하계이면 $t \leq w$ 이다.

정리 2.3.1 $\mathbb R$ 의 공집합이 아닌 부분집합 S의 상계 u에 대하여 다음은 동치이다.

- (1) u 는 S의 상한이다.
- (2) 각 $\epsilon > 0$ 에 대하여 $u \epsilon < s_{\epsilon} \le u$ 이 되는 $s_{\epsilon} \in S$ 이 존재한다.
- (3) v < u인 임의의 v에 대하여 v < s인 $s \in S$ 가 존재한다.

정리 2.3.2 \mathbb{R} 의 공집합이 아닌 부분집합 S의 하계 u에 대하여 다음은 동치이다.

- (1) $u \in S$ 의 하한이다.
- (2) 각 $\epsilon>0$ 에 대하여 $u\leq s_{\epsilon}< u+\epsilon$ 이 되는 $s_{\epsilon}{\in}S$ 이 존재한다.
- (3) u < v인 임의의 v에 대하여 s < v인 $s \in S$ 가 존재한다.

『증명』

예제 2.3.1 -

- (1) 집합 $A(\neq \emptyset)$ 에 대하여 상한이 존재하면 유일함을 증명하시오.
- (2) 공집합이 아니고 유계인 두 집합 A,B에 대하여 $A\subset B$ 이면 $\inf A \ge \inf B$, $\sup A \le \sup B$

가 성립함을 증명하시오.

2.3.3 **(R의 완비성)** 상계를 갖는 공집합이 아닌 모든 실수의 집합은 R에서 상한을 갖는다.

정리 2.3.3 아래로 유계이고 공집합이 아닌 \mathbb{R} 의 부분집합은 하한을 갖는다.

2.4 상한성의 응용

정리 2.4.1 공집합이 아닌 유계 집합 $A,B\subset\mathbb{R}$ 와 임의의 $\lambda\in\mathbb{R}$ 에대하여 집합 A+B와 λA 를 각각

$$A + B = \{a + b \mid a \in A, b \in B\}, \ \lambda A = \{\lambda a \mid a \in A\}$$

라고 정의할 때, 다음이 성립한다.

(a)
$$\sup(A+B) = \sup A + \sup B$$

(b)
$$\inf (A+B) = \inf A + \inf B$$

(c)
$$\sup \lambda A = \left\{ \begin{array}{l} \lambda \sup A \ , \ \lambda \geq 0 \\ \lambda \inf A \ , \ \lambda < 0 \end{array} \right.$$

(d)
$$\inf \lambda A = \begin{cases} \lambda \inf A, \lambda \geq 0 \\ \lambda \sup A, \lambda < 0 \end{cases}$$

예제 2.4.1 -

- (a) 위로 유계인 $S(\neq\varnothing)\subset\mathbb{R}$ 에 대하여 $a+S:=\{a+s\,|\,s\in S\}$ 라 하면 $\sup(a+S)=a+\sup S$ olch.
- (b) A와 B가 \mathbb{R} 의 공집합이 아닌 부분집합으로 모든 a $\in A$ 와 b $\in B$ 에 대하여 $a \le b$ 를 만족하면 $\sup A \le \inf B$ 가 성립한다.

『풀이』

예제 2.4.2 -

 $A_1,\,A_2,\,\cdots\,,\,A_n$ 는 \mathbb{R} 의 부분집합이고 $c_1,\,c_2,\,\cdots\,,\,c_n,\,L$ 는 실수이다. 임의의 $a_i \in A_i (i = 1, 2, \dots, n)$ 에 대하여

$$c_1 a_1 + c_2 a_2 + \cdots + c_n a_n < L$$

이면

$$c_1 \sup A_1 + c_2 \sup A_2 + \cdots + c_n \sup A_n \le L$$

이 성립한다.

예제 2.4.3 -

A는 공집합이 아니고 유계인 \mathbb{R} 의 부분집합이다. 임의의 $a \in A$ 에 대하여 $a \ge 0$ 이면 $\sup(A^2) = (\sup A)^2$ 이 성립한다.

『풀이』

정리 2.4.2 (Archimedes의 성질) $x \in \mathbb{R}$ 이면, $x < n_x$ 가 되는 $n_x \in \mathbb{N}$ 가 존재한다.

따름정리 2.4.3 t>0이면, $0<\frac{1}{n_t}< t$ 가 되는 n_t 든 N 가 존재한다.

따름정리 2.4.4 y>0이면, $n_y-1 \leq y < n_y$ 가 되는 $n_y \in \mathbb{N}$ 가 존재한다.

정리 2.4.5 (조밀성의 정리)

x와 y가 x < y인 임의의 실수이면, x < r < y인 유리수 $r \in \mathbb{Q}$ 이 존재한다.

『증명』

유리수 집합 $\mathbb Q$ 가 실수 집합 $\mathbb R$ 에서 조밀(dense)함을 증명하시오. 즉, x와 y가 실수이고 x < y이면, x < r < y를 만족시키는 유리수 r이 존재함을 보이시오. [2005]

정리 2.4.6 x와 y가 x < y인 실수이면, x < z < y인 무리수 z가 존재한다.

2.5 구간

정리 2.5.1 (축소구간성질)

 $I_n=[a_n,\,b_n]$, $n\!\in\!\mathbb{N}$ 이 유계인 축소폐구간열이면, 모든 $n\!\in\!\mathbb{N}$ 에 대하여 $\xi\!\in\!I_n$ 인 수 $\xi \in \mathbb{R}$ 가 존재한다.

『증명』

정리 2.5.2 $I_n:=[a_n,\,b_n]$, $n\!\in\!\mathbb{N}$ 이 유계인 축소폐구간열이고 I_n 의 길이 b_n-a_n 이 inf $\{b_n-a_n:n\!\in\!\mathbb{N}\}\!=\!0$ 을 만족하면, 모든 $n\!\in\!\mathbb{N}$ 에 대하여 I_n 에 포함 되는 수 ξ 는 유일하다.

정리 2.5.3 단위구간 $[0,1]:=\{x\in\mathbb{R}\,:0\leq x\leq 1\}$ 은 가산이 아니다. 따라서 \mathbb{R} 은 가산이 아니다.

제 3장 수열과 급수

3.1 수열과 수열의 극한

정의 3.1.1 실수열(sequence of real numbers) 또는 ℝ에서의 수열(sequence in ℝ)은 자연수의 집합 №에서 정의되고 치역이 실수의 집합 №에 포함되는 함수이다.

절의 3.1.2 (x_n) 을 실수열이라 하고 $x\in\mathbb{R}$ 라 하자. 모든 $\epsilon>0$ 에 대하여 $n\geq K(\epsilon)$ 이면 $|x_n-x|<\epsilon$ 을 만족하는 자연수 $K(\epsilon)$ 이 존재하면, (x_n) 은 x로 **수렴한다(converges)** 라고 하거나 x를 (x_n) 의 **극한(limit)**이라 한다. 그리고 $\lim x_n = x$ 로 표기한다. 수열이 극한을 가지면, 그 수열은 수렴한다(convergent)라 하고 수열이 극한을 갖지 않으면, 그 수열은 발산한다(divergent)라고 한다.

예제 3.1.1 -

임의의 자연수 n에 대하여 $x_n = a$ 인 상수수열은 a에 수렴한다.

『풀이』

정리 3.1.1 (극한의 유일성) 실수열은 많아야 하나의 극한을 갖는다.

정리 3.1.2 (x_n) 을 실수열이라 하고 $x\in\mathbb{R}$ 이라 하자. (a_n) 이 $\lim a_n=0$ 인 양의 실수열이고 C>0와 $m\in\mathbb{N}$ 에 대하여 $n\geq m$ 일 때 $\left|x_n-x\right|\leq Ca_n$ 이면 $\lim x_n=x$ 이다.

『증명』

예제 3.1.2

(a)
$$c > 0$$
이면 $\lim_{n \to \infty} c^{\frac{1}{n}} = 1$ 이다.

(b)
$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$
 OICH.

3.2 극한정리

정의 3.2.1 (x_n) 을 실수열이라 하자. 모든 n \in N 에 대하여 $|x_n| \leq M$ 이 되는 실수 M>0이 존재하면 (x_n) 은 유계이다(bounded)라고 한다.

정리 3.2.1 수렴하는 실수열은 유계이다.

『증명』

정리 3.2.2

- (a) (x_n) 과 (y_n) 을 각각 x와 y로 수렴하는 실수열이라 하고 $c\in\mathbb{R}$ 라 하자. 그러면 수열 $(x_n+y_n), (x_n-y_n), (x_ny_n), (cx_n)$ 는 각각 x+y, x-y, xy, cx로 수렴한다.
- (b) (x_n) 이 x로 수렴하고 (z_n) 이 z로 수렴하는 영이 아닌 실수열이며 $z \neq 0$ 이면 수열 (x_n/z_n) 은 x/z로 수렴한다.

정리 3.2.3 n>m인 임의의 $n\in\mathbb{N}$ 에 대하여 $x_n>a$ 이고 (x_n) 이 x에 수렴하면 $x\geq a$ 가 성립한다. (m은 고정된 자연수)

『증명』

정리 3.2.4 $(x_n), (y_n), (z_n)$ 이 n>m인 임의의 $n\in\mathbb{N}$ 에 대하여 $x_n\leq y_n\leq z_n$ 이고 $(x_n), (z_n)$ 이 모두 a에 수렴하면 (y_n) 역시 a에 수렴한다. (m은 고정된 자연수)

『증명』

예제 3.2.1 -

$$0 < a < b$$
에 대하여 $\lim_{n \to \infty} (a^n + b^n)^{1/n}$ 의 값을 구하여라.

『풀이』

정리 3.2.5 임의의 실수 x에 대하여 x에 수렴하는 유리수열, 무리수열이 존재한다.

예제 3.2.2 -

- (a) (x_n) 을 $x\in\mathbb{R}$ 로 수렴하는 실수열이라 하면 실계수 다항식 $p(t)=a_kt^k+a_{k-1}t^{k-1}+\cdots +a_1t+a_0$ 에 대하여 $(p(x_n))$ 은 p(x)로 수렴한다.
- (b) (x_n) 을 $x\in\mathbb{R}$ 로 수렴하는 실수열이라 하고 r(t)=p(t)/q(t)을 유리함수라 하자. 모든 $n\in\mathbb{N}$ 에 대하여 $q(x_n)\neq 0$ 이고 $q(x)\neq 0$ 이라 가정하면 수열 $\left(r(x_n)\right)$ 은 p(x)/q(x)로 수렴한다.